Multilevel Monte Carlo approximation of functions

نویسندگان

  • Sebastian Krumscheid
  • Fabio Nobile
چکیده

Many applications across sciences and technologies require a careful quantification of non-deterministic effects to a system output, for example when evaluating the system’s reliability or when gearing it towards more robust operation conditions. At the heart of these considerations lies an accurate yet efficient characterization of uncertain system outputs. In this work we introduce and analyze novel multilevel Monte Carlo techniques for an efficient characterization of an uncertain system output’s distribution. These techniques rely on accurately approximating general parametric expectations, i.e. expectations that depend on a parameter, uniformly on an interval. Applications of interest include, for example, the approximation of the characteristic function or of the cumulative distribution function of an uncertain system output. A further important consequence of the introduced approximation techniques for parametric expectations (i.e. for functions) is that they allow to construct multilevel Monte Carlo estimators for various robustness indicators, such as for quantiles (also known as value-at-risk) and for the conditional value-at-risk. These robustness indicators cannot be expressed as moments and are thus not easily accessible usually. In fact, here we provide a framework that allows to simultaneously estimate a cumulative distribution function, a quantile, and the associated conditional value-at-risk of an uncertain system output at the cost of a single multilevel Monte Carlo simulation, while each estimated quantity satisfies a prescribed tolerance goal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Monte Carlo method with applications to stochastic partial differential equations

In this work, the approximation of Hilbert-space-valued random variables is combined with the approximation of the expectation by a multilevel Monte Carlo method. The number of samples on the different levels of the multilevel approximation are chosen such that the errors are balanced. The overall work then decreases in the optimal case to O(h−2) if h is the error of the approximation. The mult...

متن کامل

Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method

We develop a complete convergence theory for the Maximum Entropy method based on moment matching for a sequence of approximate statistical moments estimated by the Multilevel Monte Carlo method. Under appropriate regularity assumptions on the target probability density function, the proposed method is superior to the Maximum Entropy method with moments estimated by the Monte Carlo method. New t...

متن کامل

Non-nested Adaptive Timesteps in Multilevel Monte Carlo Computations

This paper shows that it is relatively easy to incorporate adaptive timesteps into multilevel Monte Carlo simulations without violating the telescoping sum on which multilevel Monte Carlo is based. The numerical approach is presented for both SDEs and continuous-time Markov processes. Numerical experiments are given for each, with the full code available for those who are interested in seeing t...

متن کامل

Computational complexity analysis for Monte Carlo approximations of classically scaled population processes

We analyze and compare the computational complexity of different simulation strategies for Monte Carlo in the setting of classically scaled population processes. This setting includes stochastically modeled biochemical systems. We consider the task of approximating the expected value of some function of the state of the system at a fixed time point. We study the use of standard Monte Carlo when...

متن کامل

The Multilevel Method of Dependent Tests

Approximation properties of the underlying estimator are used to improve the efficiency of the method of dependent tests. A multilevel approximation procedure is developed such that in each level the number of samples is balanced with the level-dependent variance, resulting in a considerable reduction of the overall computational cost. The new technique is applied to the Monte Carlo estimation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017